A TREATISE ON THE RESISTANCE OF MATERIALS: AND AN APPENDIX ON THE PRESERVATION OF TIMBER, PP. 1-243

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649068081

A Treatise on the Resistance of Materials: And an Appendix on the Preservation of Timber, pp. 1-243 by De Volson Wood

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

DE VOLSON WOOD

A TREATISE ON THE RESISTANCE OF MATERIALS: AND AN APPENDIX ON THE PRESERVATION OF TIMBER, PP. 1-243

Trieste

A TREATISE

ON THE

RESISTANCE OF MATERIALS,

And an Appendix

ON THE

PRESERVATION OF TIMBER.

BY

DE VOLSON WOOD,

PROPESSOR OF CIVIL ENGINEERING IN THE UNIVERSITY OF MICHIGAN,

NEW YORK: JOHN WILEY & SON, 15 ASTOR PLACE. 1871.

Entered according to Act of Congress, in the year 1871, By JOHN WILEY & SON, In the Office of the Librarian of Congress, at Washington.

THE NEW YORK PRINTING COMPANY. 205, 207, 209, 211, good 213 East Treeffth Street.

PREFACE.

This book contains the substance of my lectures to the Senior Class in Civil Engineering, in the University, during the past few years, on the *Revistance of Materials*. The chief aim has been to present the theories as they exist at the present time. The subject is necessarily an experimental one, and any theory which has not the results of experiments for its foundation is valueless. I have therefore presented the results of a few experiments under each head, as they have been obtained in various parts of the world, that the student may judge for himself whether the theory is well founded or not. It is hoped that this part of the work will be valuable to the practical man.

The descriptive parts are given more fully here than they were in the lectures, because they can be consulted more profitably on the printed page than they could in the manuscript, and will be examined more by the general reader than the mathematical part. But, on the other hand, the mathematical part is much more condensed here than it was in the class-room. This was done so as to keep the work in as small a space as possible; and also because a student is supposed to have time for deliberate study, and can take time to overcome his difficulties and secure his results. It is intended, however, in the next edition, to publish an appendix, in order to explain the more difficult mathematical operations of the text.

I have taken special pains to make frequent references to other books and reports from which I have secured information. This will enable any one to verify more fully the positions which have been taken, and will be convenient for those who desire to secure a more thorough knowledge of any particular topic.

I do not deem it necessary to indicate those topics which are wholly original. To the reader who has never before given the subject any attention, all will be new; and the well-informed reader will readily detect what is original.

A large amount of labor and study has been given to this subject in nearly all civilized countries, and yet the theories in regard to resistance from transverse stress are not very satisfactory. In regard to the strength of rectangular beams, the "Common Theory," as I PREFACE.

have called it, is sufficiently correct for ordinary practical purposes, especially if the modulus of rupture, as determined by direct experiment upon rectangular beams of the same material, be used. Barlow's "Theory of Flexure" appears to be more nearly correct in theory when applied to rectangular beams and beams of the I section, or other forms which are symmetrical in reference to the neutral axis. But when the sections are irregular none of the theories can be relied upon for securing correct results. Whatever theory may yet do for us, it is quite evident that no theory will ever be devised, of practical value, which will be applicable to the infinite variety of forms of beams which are or may be used in the mechanic arts. That I may not be misunderstood upon this point, I will be more specific. We know that our present theories do not always give correct results, and that the more irregular the form the greater the discrepancy between the actual and computed strengths of a beam. Now, if a theory is ever devised which will take into account all the conditions of strains in a beam, I think it will be too complicated to be of practical value to the mechanic. I do not desire by this remark to disparage theory. Theories are valuable. Without them we would make little or no progress. Fortunately for the engineer, it is not the mathematically exact result that he desires, but the *reliable* result. He does not so much desire to know that one pound more of load will break his structure, as he does that he may depend upon it to carry from four to six times the load which he intends to put upon it. The theories, as now developed, are safe guides to the mechanic and engineer; still we learn to depend more and more upon direct experiment. The theory also in regard to the deflection of beams under a transverse strain. has recently received a modification, due to a consideration of the effect of transverse shearing; but the modification is sustained both from mathematical and experimental considerations. May not more careful experiments yet teach us that it must be still further modified on account of the longitudinal shearing strain?

The author will be pleased to receive the results of experiments which have been made in this country, so that if this work is revised in the future, it may be made more profitable to the engineering profession.

ANN ABBOR, MICH., Sept., 1871.

iv

TABLE OF CONTENTS.

-

INTRODUCTION.

-

ART		PAGE
	General Problems	
	Definition of Certain Terms	
3.	Stresses produce Elastic and Ultimate Resistances	8
4.	General Principles of Elastic Resistance	8
5.	Coefficient of Elasticity	4
6.	Proofs of the Laws of Elastic Resistance	5

CHAPTER L

TENSION.

7.	Experiments on the Elongation of Wrought Iron	7
8.	Graphical Representation of Results	8
9.	Elongation of Cast Iron	10
10.	Graphical Representation	12
11.	Tables of Experiments on Cast Iron	12
	Coefficient of Elasticity of Malleable Iron	14
13.	Elasticity of Wood Longitudinally	15
	Elasticity of Wood Radially	16
15,	Remark on the Coefficient of Elasticity	17
16.	Elongation of a Prismatic Bar by a Weight	17
17.	Elongation of a Prismatic Bar when the weight of the bar is con- sidered.	19
18.	Work of Elongation	20
19.	Vertical Oscillations.	21
	Viscocity of Solids	22
21.	Modulus of Strength	23
22.	Strength of a Prismatic Bar	24
28.		25
24.		25
25.		26
26.		30
27.		31
28.	Strength of Rolled Sheets of Iron in different directions	83
	Strength of Wrought Iron at various temperatures	36
	Effect of Severe Strains on the Tenacity of Iron	40
	Effect of Repeated Rupture	41

CONTENTS.

NO. OF THE

	actur-	PAGE
32.	Strength of Annealed Iron	41
38.	Strength of Metals Modified by Treatment	42
84.	Effect of Prolonged Fusion on Cast Iron	43
85.	Remelting Cast Iron-On Strength of	43
88.	Cooling Cast Iron-Affects Strength of	44
87.	Strength Modified by Various Circumstances	44
38.	Safe Limit of Loading	44

CHAPTER IL

COMPRESSION.

39.	Elastic and Ultimate Resistance	46
40,	Compression of Cast Iron	47
41.	Compression of Wrought Iron	48
	Graphical Representation of Results	49
48.	Comparative Compression of Cast and Wrought Iron	49
44.	Compression of other Metals	50
	Modulus for Crushing	50
	Modulus of Strain	51
47.	Resistance of Cast Iron to Crushing	52
48.	Resistance of Wrought Iron to Crushing	58
	Resistance of Wood to Crushing	58
	Resistance of Cast Steel to Crushing	54
	Resistance of Glass to Crushing	54
	Strength of Pillars	55
58.	Formulas for the Weight of Pillars	58
	Irregularities in the Thickness of Cast Pillars	60
55.	Experiments of the N. Y. C. R. R. Co. on Angle Irons	60
	Buckling of Tubes	66
57.	Collapse of Tubes	66
58.	Results of Experiments on Collapsing	69
	Law of Thickness to resist Collapsing	69
	Formula for Thickness to resist Collapsing	72
	Resistance of Elliptical Tubes to Collapsing	72
62.		73
63.	Strength from External and Internal Pressure Compared	73
	Resistance of Glass Globes to Collapsing	73

CHAPTER III.

THEORIES OF FLEXURE AND RUPTURE FROM TRANSVERSE STRESS.

65.	Remark upon the Subject	75
66.	Galileo's Theory	75
67.	Robert Hooke's Theory	76
	Marriotte's and Leibnitz's Theory	
69.	James Bernouilli's Theory	76
70.	Parent's Theory	77

vi

CONTENTS.

vii

	OF THE	
ART	TCLR.	PAGE
71.	Coulomb's Theory	77
72,	Young's "Modulus of Elasticity "	77
73.	Navier's Developments of Theory	78
74.	The Common Theory	78
	Barlow's Theory.	
76.	Remarks upon the Theories	82
77.	Position of the Neutral Axis found Experimentally	83
78.	Position of the Neutral Axis found Analytically	84

CHAPTER IV.

SHEARING STRESS.

79.	Examples of Shearing Stress.	89
80,	Modulus of Shearing Stress	89
81.	A Problem of a Tie Beam	91
82.	A Problem of Riveted Plates	92
	Longitudinal Shearing in a Bent Beam	92
84.	Transverse Shearing in a Bent Beam	93
	Shearing Resistance to Torsion	

CHAPTER V.

FLEXURE.

86.	General Equation of the "" Elastic Curve "	96
87.	Moment of Inertia of a Rectangle and of a Circle	98
88.	GENERAL STATEMENT OF THE PROBLEMS	99
89.	Beams Fixed at one end Load at the Free End	99
90.	Beams Fixed at one end and Loaded Uniformly	101
91.	Previous Cases Combined	102
92.	Beams Supported at their Ends and Loaded at any Point	103
93.	Beams Supported at their Ends and Loaded Uniformly	105
94.	The two preceding Cases Combined	105
95.	Examples.	106
96,	Deflection according to Barlow's Theory	108
97.	Beams Fixed at one end, Supported at the other, and Loaded at any	
	Point	108
98.	Beams Fixed at one end, Supported at the other, and Loaded Uni-	
	formly	113
99.	Beams Fixed at both ends and Loaded at the Middle	115
100.	Beams Fixed at both ends and Loaded Uniformly	116
101.	Table of Results	118
102.	Remarks upon the Results	118
103.	Modification of the Formulas for Deflection to include shearing re-	
	sistance	
104.	Unsolved Problems	121
105.	Deflection of Beams having Variable Sections	122
106.	Beams subjected to Oblique Strains	124