DISCUSSION OF THE PRECISION OF MEASUREMENTS: WITH EXAMPLES TAKEN MAINLY FROM PHYSICS AND ELECTRICAL ENGINEERING

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649563067

Discussion of the Precision of Measurements: With Examples Taken Mainly from Physics and Electrical Engineering by Silas W. Holman

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

SILAS W. HOLMAN

DISCUSSION OF THE PRECISION OF MEASUREMENTS: WITH EXAMPLES TAKEN MAINLY FROM PHYSICS AND ELECTRICAL ENGINEERING

Trieste

DISCUSSION

OF THE

•

86

PRECISION OF MEASUREMENTS.

WITH EXAMPLES TAKEN MAINLY FROM

PHYSICS AND ELECTRICAL ENGINEERING.

SILAS W. HOLMAN, S.B.

ASSOCIATE PROPESSOR OF PHYSICS, MASSACHUSETTE DESTITUTE OF TECHNOLOGY.

> FIRST EDITION. FIRST THOUSAND.

> > .

NEW YORK: JOHN WILEY & SONS, 58 EAST TENTH STREET. 1894.

0

2

٠

32

50

Ena 4008 0

ARVARU COLL NOV 17 :394 LIBRAR Firian ? 2091 7

COPTRICHT, 1893, BY SILAS W. HOLMAN,

Rosser Daumond, Electrotyper, 444 & 446 Pearl Street, New York. Frinters, Printers, 200 Pearl Stroom, New York,

PREFACE.

. .

> THE material presented in this volume is the outcome of several years' teaching of the subject. In a less complete form it was prepared for lecture notes and was printed in pamphlet form, but not published, by the Massachusetts Institute of Technology in 1888, having appeared in the *Tech*nology Quarterly and in the *Electrical Engineer* in 1887.

> In this revised form, the author has felt that it perhaps possessed sufficient completeness and originality to be of interest or value to students and teachers, and therefore to merit publication.

> In venturing to urge the importance of the subject as a course of study for engineers and for students of physics or other pure sciences, the author would suggest the value of the attitude of mind produced by it. One who has in any reasonable degree mastered its methods, although he may never apply them directly, will not only have increased his power to intelligently scrutinize experimental results, but will have acquired a tendency to do so. And it is perhaps not too much to hope that he may acquire a notion of a judicious distribution of effort which, with the best of results to himself, he may carry into quite other matters.

> > SILAS W. HOLMAN.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, BOSTON, September, 1892. 995 12 M

i .

CONTENTS.

PRECISION OF MEASUREMENTS.

FAGE

x .

Introductory.....

DIRECT MEASUREMENTS.

Direct Measurements	4
Indirect Measurements	4
Quantities: Independent, Conditioned	5
Sources of Error	5
Errors of Single Observations	6
Variable Part	6
Constant Part, Constant Error	7
Elimination of Constant Error	7
Corrections	8 .
Example I. A, B, C. Distance by Steel Tape	9
Determinate and Indeterminate Errors	10
Residuals	II
Accuracy or Error of Result	13 .
Deviations	14
General Law of Deviations	15
Mean: Best Representative Value	16
Deviation Measure	16
Average Deviation	16
Example II	18
Places of Figures in d.m.; and Negligible Amounts	20
Best Value of m	22
Other Deviation Measures	23
Special Law of Deviations	24
Precision Measure of Result	25
To Make Residuals Negligible in P.M	26
Criterion	26
Best Value of Residuals: Equal Effects	27
Fractional Deviation, Fractional Precision	29
Mistakes	30
· V	

CONTENTS.

	PAGE.	
Critericn for Rejection of Doubtful Observations	. 30	
Weights	. 31	
Meaning of Estimated Accuracy of Direct Result	. 32	2
Forms of Problems on Accuracy of Result	. 33	į,
Data Required to Substantiate Result	. 36	
Planning of Direct Measurement	. 36	
Solutions of Illustrative Problems in Direct Measurements	. 37	
Example III. Weighing. Balance		
Example IV. Voltmeter Calibration	. 41	

INDIRECT MEASUREMENTS.

	Estimate of Accuracy of Indirect Result	45
4	Error of Method	46
	Check Methods	47
	Relation between P.M. of Results and of Components	47
	Types of Problems	47
	General Formulæ	48
	Notation	49
	Separate Effects. I, II. Formulæ	49
	Resultant Effects. III; 1, 2. Formulæ	50
	Equal Effects. Formulæ	53
	Application to Precision Discussions	54
	Formulæ for General and Special Functions	55
	Simple Functions	56
	Separation into Factors which are Functions of Single Components,	61
	Separation into Groups	63
	Critera for Negligibility of 8 in Components	67
	Numerical Constants	70
	Equal Effects. Demonstration	70.
	Estimated Precision Measures of Components	72
	Components with Special Laws of Deviations	73
	Preparation of Functions for Discussion	73
	Simplification of Functions	75
	Significant Figures	76
	Rules for Significant Figures. 1-6	77
	Examples V-XII	78
	Demonstration of Rules	80
	Forms of Problems on Accuracy of Result	84
	Data Required to Substantiate Result	85
	Planning of Indirect Measurement	85
	Examples:-	
	XIII-XVI. Value of g by Simple Pendulum	86-
	XVII. Calorimeter	88
	XVIII. Heat by Incandescent Lamp	89

2

vi

÷

CONTENTS.

	or statistical constraints to be a set of the	AGE
XIX.	Volume of Sphere	90
XX.	Value of g by Simple Pendulum	90
	Cosine Galvanometer	
XXII.	Continuous Calorimeter	94
XXIII.	H. P. by Friction Brake	96
	Specific Resistance	

. BEST MAGNITUDES OF COMPONENTS,

Nature of Prol	blems
For a Single C	omponent
For Two Varia	able Components 104
	o, Procedure
Best Mag	nitudes
	omponents 107
Best Ratio	
Best Mag	nitudes
	Solution by Equal Effects 108
Best Rati	0 108
	nitudes
Examples:	
XXV.	Best Deflection on Tangent Galvanometer 110
XXVI.	Electrical Heating of Conductor 111
XXVII.	Bar for Moment of Iuertia 112
XXVIII.	Modulus of Elasticity of Wooden Beam 115
XXIX.	Specific Resistance of Wire 118
XXX.	XXVIII by Another Method 118

SOLUTIONS OF ILLUSTRATIVE PROBLEMS.

Example	XXXI.	Calibration of Voltmeters	120
Example	XXXII.	Dynamo Efficiency by Stray-Power Method	122
Example	XXXIII.	Cradle Dynamometer	130
Example	XXXIV.	Tangent Galvanometer,	138
Example	XXXV.	Electro-static Capacity. Thomson's or Gott's Method	159
Example	XXXVI.	Magnetometer	160
Example	XXXVII.	Battery Resistance and E. M. F	161

TABLES.

Sines, Cosines, Tangents	166
Constants	166
Squares, Cubes, Reciprocals	167
Logarithms	168
INDEX	171

vii