AN ELEMENTARY TEXT-BOOK ON STEAM ENGINES AND BOILERS. FOR THE USE OF STUDENTS IN SCHOOLS AND COLLEGES

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649140060

An elementary text-book on steam engines and boilers. For the use of students in schools and colleges by J. H. Kinealy

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

J. H. KINEALY

AN ELEMENTARY TEXT-BOOK ON STEAM ENGINES AND BOILERS. FOR THE USE OF STUDENTS IN SCHOOLS AND COLLEGES

Trieste

AN

ELEMENTARY TEXT-BOOK

ON

STEAM ENGINES AND BOILERS.

FOR THE USE OF STUDENTS IN SCHOOLS AND COLLEGES.

B۲

J. H. KINEALY,

Professor of Mechanical Engineering, Washington University, St. Louis, Mo.

ILLUSTRATED WITH DIAGRAMS AND NUMEROUS CUTS SHOWING AMERICAN TYPES AND DETAILS OF ENGINES AND BOILERS.

FIFTH EDITION,

NEW YORK : SPON & CHAMBERLAIN, 123 LABERTY STREET. LONDON : E. & F. N. SPON, 57 HAYMARKET, S. W. 1905.

GENERAL

COPYRIGHT, 1961, BY J. H. KINEALY.

275 Ki

THE BURE PRINTING HOUSE, NEW YORK.

ŧ.

PREFACE.

This book is written solely as an elementary text-book for the use of beginners and students in engineering, but more especially for the students in the various universities and colleges in this country.

No attempt has been made to tell everything about any one particular subject, but an attempt has been made to give the student an idea of elementary thermodynamics, of the action of the steam in the cylinder of the engine, of the motion of the steam valve, of the differences between the various types of engines and boilers, of the generation of heat by combustion, and the conversion of water into steam.

Care has been taken not to touch upon the design and proportion of the various parts of engines and boilers for strength; as, in the opinion of the writer, that should come after a general knowledge of the engine and boiler has been obtained.

In the derivation of some of the formulæ in thermodynamics, it has been necessary to use the calculus, but the use of all mathematics higher than algebra and geometry has been avoided as much as possible.

An earnest endeavor has been made to present the subject in a clear and concise manner, using as few words as possible and avoiding all padding.

J. H. KINEALY.

WASHINGTON UNIVERSITY, August, 1895.

(iii)

180712

22

PREFACE TO THE FOURTH EDITION.

This edition is practically the same as the previous one. The only change made has been to correct some typo, graphical errors,

-

J. H. KINEALY.

BOSTON, MASS., August, 1903.

TABLE OF CONTENTS.

CHAPTER 1.

ELEMENTARY THERMODYNAMICS.

	1011100110										AGE.
*****	CLES,									1.1	4004
1.	Thermodynamics .								D		- 1
	First Law of Thermo	dy	nam	ics			1	1000	•		2
	Work, Power .				•	∂r	0.5	2.4%			3
4.	Unit of Heat .									4	5
5.	Mechanical Equivale	nt	in.		÷.				×.	10	6
6.	Application of Heat	to	Bod	ies				0.00	5 2		6
7.	Second Law of Ther	me	odyn	amic	s	.e.					7
8.				•	4	4					8
	Absolute Temperate	ire		8	4		243	•0	8	(A)	9
	Application of Heat			erfect	Gas				20		10
	Isothermal Expansio			•		14				-	13
- 12 (25.2	Adiabatic Expansion		1		<u> </u>	1				100	15
1000	Fusion		44	10	32	-	1.400	80		÷.	19
	Vaporization .										19
	Application of Heat	to	Wa	ter	- 22		10	1	- Q	S.	20
	Superheated Steam				1	5		$\mathbf{\hat{s}}$		39	22

CHAPTER II.

THEORY OF THE STEAM ENGINE.

17.	Theoretical H	eat Engine	e	142	10	1.6	6 5			18	23
	Cycle .	13-11	302	3	29	300	.	30	12	0.5	28
19.	Thermodynan	ic Efficien	105	38	1		•				27
	Perfect Gas E				10	4				*	27
21.	Perfect Steam	1 Engine			30 0				3 t	323	32
22.	Theoretical D	lagram of	the	Real	Eng	ine	21			٠	36
23.	- 프로일이에서 가장 가지 않는							-			44
24.	Efficiency of	the Actual	Er	gine	502	5	*		19		46
56325	CERTIFICATION OF THE			1993 - C.					(v))	

STEAM ENGINES AND BOILERS.

CHAPTER III.

TYPES AND DETAILS OF ENGINES.

ART	TCLES,											PAGE.
25.	Classification	of I	ingi	nes		12	1.1	100.0	80		24	53
26,	Plain Slide Va	ive :	Eng	nes		12					÷.	55
27.	Automatic Hi;	th S	peed	Engl	nes	64	14			2	2	56
28.	Corliss Engine	s	- e	4.2				14.5				59
29,	Cylinder and V	alve	Ch	est								61
30.	Piston .			1	12		14	0.0				63
81.	Cross-head	× .		•16					2.2	4		64
32.	Connecting Ro	bd										68
33.	Crank .	19		167	10				1		8	72
84.	Main Bearings	1.1	12	20	10	÷.	÷.	1			÷.	74
85.	Eccentric											75
	Governors						÷.		100		1	76

CHAPTER IV.

ADMISSION OF STEAM BY VALVES,

37.	Opening and C	losin	ng tl	ne Po	erts by	the	Valv	'es	1243	1		78
38,	Relative Mover	nent	ts of	the	Piston	and	Val	99	100	10	(\mathbf{x})	83
39,	Balanced Slide	Va	lve	0.000			20	200		22	10	89
40.	Piston Valve		Se			9						90
41.	Multiple Admi:	ssio	u Va	lve	20			5			÷.	91
42,	Meyer Valve	÷			¥65	2		19		80		91
43.	Corliss Valve											92
44.	Link Motion		54 - E		2	1.1	2				8	95

CHAPTER V.

VALVE DIAGRAMS.

45. Zenner Valve Diagram		10	$\overline{\mathbf{x}}$	14	1	63		97
46. Valve Diagram Problems				2.9		•		101
47. Effect of the Obliquity of	the (lonne	cting	Rod	on th	ie Po	int	
of Cut-off	1000			210,000				110
48. Swinglog Eccentrics .		c.	ΞĒ.		8		80	113

•

CONTENTS.

CHAPTER VI.

INDICATOR AND INDICATOR CARDS.

ART	ICLES.										PAGE,
49.	Indicators			30				803	14	0.43	118
50.	Adjustment	s and C	onne	ction	s of]	Indica	ators			1.4	120
51.	Reducing M	otions					100	- 65	14		122
	Cord for In-				39		24			10	127
	Taking the			rd					10	+:	128
	To Determ				wer :	from	the I	ndica	tor C	ard	128
	To Find th										
	Indicat	or Card			1001		- 19 ^{- 2}	•	1/9	1.00	132
56.	To Find th	e Welg	ht of	Stea	ım us	ed pe	r Hou	ar pe	r Hor	8e-	
	power						34				183
57.	Interpretati	on of t	he A	ction	of t	he Va	alves	from	the	Ap-	
		nce of						•	24		134

CHAPTER VII.

COMPOUND ENGINES AND CONDENSERS.

58.	Compound Engines .			24			85	141
59.	Tandem Compound Engines	393		8		13	8 8	143
60,	Cross-Compound Engines						8	144
61.	Ratio of Cylinders of Compo	bund	Engi	nes	1	1		145
	The Horse-Power of Compou				81	88		145
	Condensers	1002	÷.	·			÷.:	146
	Effect of the Condenser on the	he Pe	ower	of th	e Eng	line	-	150
	Amount of Condensing Water					1.	a);	155

CHAPTER VIII.

HEAT AND COMBUSTION OF FUEL.

66.	Steam Making		- Q			10		155
	Steam Required per Hour	18	4		- 2		*	157
	Heat Required per Hour .	÷	. +	0.00	×.		10	158
	Fuel Required per Hour .			a.e.)		S.	- 8	160
	Air Required for Combustion	22	14		÷.			166
	Rate of Combustion .	2 0	14	(m) (\times	89		168
	The Furnace	6		8.8	*		7 5	169