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NOTES ON THE CONCAVE GRATING.
By 5. A. MITCHELL.
I. FUNDAMENTAL FORMULA.

Tue general theory of the concave spherical grating has
been investigated by Rowland (Phel. Mag., 16, 1883 ; and Amer.
Jour. Sei. (3), 26, 1883); by Glazebrook (Phil. Mag., 15, 1883);
by Mascart (Jour. de Phys. (2), 2, 1883); by Baily (Phys. Sec.
Proc., 5, 1883) ; and by Kayser { Winkelmann, Handbuch der Plysik,
p. 408).

The following treatment is one which starts’ from a general
condition, true for every form of grating ruled with equal spaces
along a chord. By introducing the condition that the form of
the grating is the section of a sphere, the general equation of
the concave grating is obtained.

From the general theory of gratings (Lord Rayleigh, “Wave
Theory of Light," § 14, Ency. Brit., p. 437; and Kayser, Hand-
buck der Physik), we know, if we have a grating ruled with equal
spaces on any surface, that

J\.=§r(siny—]—sin #). (1}

where @ is the grating space, N the order of the spectrum,
and w4 the angles which the incident and diffracted light make
with the normal to the surface at any point, and A is the wave-
length.

That is, in Fig. 1, if L is the radiant point, and a cone of
rays from L falling on the surface of the grating Q0T at Pis
brought to a focus at L' by any means (if the grating is plane
a lens will be necessary), then A is the wave-length of this
light.

The above equation may be written:

{sin ¥~ sin p) = ﬁ?

102
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Fis. 1.

If now we allow the point P to move in the plane LolL’,
along the surface Q07T so that the angles which the incident
and diffracted light make with the normal to the surface are
now (7 + 8+) and (p 4+ 8p), then a new wave-length (A 4-820)
will be brought to a focus at L', so as to satisfy the equation

sin (y+8y) + sin (u 4 8p) = 3{.&"1} @

w
Developing each term by Maclaurin's theurem. and subtract-
ing (2}, we get

cos ydy— ¥ siny8y' 4 cos pdp— % sin pdpr = iﬁ(ﬂfl} (4)

in which we neglect quantities of a higher order than the second.
Hence, introducing an independent variable ¢, we get:

cos v%m% sin y ( ) a’d-+c06»——/£ Sm.“(d
_ 14N
e Jé

This equation gives the change in wave-length due to a
change in the angles of incidence and diffraction.

If now the surface is spherical —the case of Rowland's con-
cave grating— O is the "center of the grating,” C the center of
curvature, O is normal to the surface at 2 and the line CF is
the radius of curvature p. Then the angle LPC is equal to v,

s
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L'PCis equal to p, and putting OCP and OMP equal respec-
tively to ¢ and &, we see:

y=0—¢;, p=0—¢;

and hence, :
dy 46 . dp_ d0"
¢ " d¢ ' de T dg | (6)

Calling the distances LP and L'FP respectively K and 7, we
see that by letting fall perpendiculars PR and PR’ on L and
L' @ respectively that

PR=pddcosy=2Rd0.

{8
Hence :{—¢= %}f
a CO%
and consequently .-f_; — 1‘34 -1
(7
a
Similarly, d_:= & 0?_8 £ o

Substituting these values of j—; and :;—; in equation (3)

we get:
Ly pCosE _
cos y (25T — 1) + cos  (E2E — 1) (3)
1d{NVA) 1 pcosy )“ poosp )
o +2a'¢{siny( 7 1 +sln,u( - 1)
which equation is true to terms of the order 4¢*. To havea

perfect focus for waves of length A at L', this change in wave-
length due to a change in the angle ¢ must be zero, or in other

words :T% =o0. Light of wave-lengths which are whole multi-

ples of & will also be brought to the same focus at L', since
dizA) d(3x)

i @ Tdé  °

4 (NVA)
dd

quantities of the first order (¢}, we get:

R

PR - (-

Hence making =0, and neglecting infinitely small
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It may be noted that ‘the omitted term contains as a factor:

. peosy ¥ pcos p Y
sm-;(—j, I) + sin p( = 1) y {10}

Equation {g) may be put in the form

co‘5?7+cosrg=cnsy—:wspl (i)
whence we get:
r= R p cos'p
R {cos y + cos p)—p cos®y '

(r2)

This is the equation of the curve on which the spectra are
brought to a focus. In this, the center of the grating is the ori-
gin, the line passing through the center of curvature is the axis
of reference, £ and v the codrdinates of the source of light, »
and g the cobrdinates of the spectral line.

This is the same equation as derived by Rowland (foc. ait.).

Further, we see that equation (11) is satisfied by making
R=pcosy, r=p cos p. The same substitution makes the
omitted term, viz. (10), vanish. Consequently, if the condi-
tions K=p cos 7, r=p cos p are satisfed, formula (12} is true
to terms of the second order. (See Kayser, loc. i) This
condition is secured automatically in *Rowland's Mounting,"
where K=p cosy, p=0. Therefore r=p. (See Ames, fokns
Hopkins Circulars, May, 1889.) )

This mounting consists in having slit, grating, and camera at
the vertices of a right angled triangle, the camera being placed
at the center of curvature of the grating.

II.  ASTIGMATISM.

One of the most important properties of a concave grating is
its *astigmatism,” 4, ¢,, the fact that a point of light as a source
gives rise to a focus, not a point, but a line. The advantages
arising from this fact, as pointed out by Ames, (Jokns Hopkins
Circulars, May 188g) are:

1. A narrow spark at the slit is broadened out into a wide
spectrum
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2. Greater accuracy in comparing metallic and solar lines.

3. No “dust lines,” as they are brought to a different focus

4. A spectrum is obtained which is broad enough to stand
enlarging.

Although this property has always been recognized, no for-
mula giving the amount of the astigmatism has ever been pub-
lished, at least to my knowledge. This quantity is therefore
deduced in the following pages.

Fic. 2,

In Fig. 2 let D be the position of the point of light at the
slit situated at a distance R from the center of the grating Oy
A B is the spectral line under consideration, which is conse-
quently parallel to the lines of the grating, and is situated at a
distance » from the center of the grating; C is the center of
curvature; C O is the radius of curvature p. 4, O, €, and D lie
in a horizental plane.

Let P 0O be a vertical section of the grating, 4. ¢, parallel to
the lines of the grating. A small pencil of rays from the slit D
falling on the grating at O is brought to a focus at 4, a small
pencil from D falling on the grating at £ is brought to a focus
at B. It is our problem to find the length of 4 B, assuming A B
to be perpendicular to 0 4.

Call 4 8=C, PKX=Z, where PK is the perpendicular let
fall from P on the radius of curvature OC,

Since K is a very small quantity compared with the other
quantities considered :



