ELEMENTS OF ANALYTIC GEOMETRY

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649572052

Elements of Analytic Geometry by Arthur Sherburne Hardy

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

ARTHUR SHERBURNE HARDY

ELEMENTS OF ANALYTIC GEOMETRY

Trieste

ELEMENTS

OF

MatG HZ68e

ANALYTIC GEOMETRY.

BY

ARTHUR SHERBURNE HARDY, PH.D.,

PROFESSION OF MATHEMATICS IN DARTMOUTH COLLEGE.

+0,0:04

BOSTON, U.S.A.: PUBLISHED BY GINN & COMPANY. 1889.

PREFACE.

ALTHOUGH writing a text-book for the use of beginners following a short course, the tendency of an author is to sacrifice the practical value of the treatise to completeness, generalization, and scientific presentation. I have endeavored to avoid this error, which renders many works unsuitable for the class-room, however valuable they may be for reference. and yet to encourage the habit of generalization. To this end I have attempted to shun the difficulties involved in introducing the beginner to the conics, before he is familiar with their forms, through the discussion of the general equation; and at the same time to secure to him the advantages of a general analysis of the equation of the second degree. The teacher will observe the same effort to cultivate the power of general reasoning, which it is one of the objects of Analytic Geometry to promote, in the preliminary construction of loci, a process too often left in the form of a merely mechanical construction of points by substitution in the equation. In passing from Geometry to Analytic Geometry, the student should see that, while the field of operations is extended, the subject matter is essentially the same; and that what is fundamentally new is the method, the lines and surfaces of Geometry being replaced by their equations. His chief difficulties are :

PREFACE.

First. A thorough understanding of the device by which this substitution is effected; hence considerable attention has been paid to this simple matter.

Second. The acquisition of an independent use of the new method as an instrument of research; hence the insertion of problems illustrative of the analytic, as distinguished from the geometric, method of proof. The function of numerical examples — that is, of examples consisting of a mere substitution of numerical values for the general constants—is simply that of testing the student's knowledge of the nomenclature. The real example in Analytic Geometry is the application of the method to the discovery of geometrical properties and forms.

The polar system has been freely used. It is not briefly explained and subsequently abandoned without application; nor is it applied redundantly to what has been already treated by the rectilinear system. It is used as one of two methods, each of which has its advantages, the selection of one or the other in any given case being governed by its adaptability to the demonstration or problem in hand.

The time allotted to the courses in Analytic Geometry for which it is hoped this treatise will be found adapted has determined the exclusion of certain topics, and has limited the chapters on Solid Geometry to the elements necessary to the student in the subsequent study of Analytic Mechanics.

ARTHUR SHERBURNE HARDY.

HANOVER, N.H., Oct. 6, 1888.

iv

PART I. - PLANE ANALYTIC GEOMETRY.

CHAPTER L - COORDINATE SYSTEMS.

SECTION I. - THE POINT.

The Rectilinear System.

ABI	No. the state - st	AAAAA
1.	Position of a point in a plane	1
2.	Definitions	2
3.	Construction of a point	2
4.	Definitions	2
5.	Equations of a point. Examples	3
6.	Division of a line. Examples	4
7.	Distance between two points. Examples	5

The Polar System.

8.	Position of a point in a plane	6
9,	Signs of the polar coordinates	7
10.	Construction of a point	7
	Equations of a point	7
	Definitions. Examples	8
13.	Distance between two points. Examples	8

SECTION II. - THE LINE.

The Rectilinear System.

14.	Loci, and their equations	10
15.	Distinctions between Analytic Geometry, Geometry, and Algebra	11
16.	Quantities of Analytic Geometry	12
17.	Construction of loci. Examples	13

The Polar System. ART. PAGE. 18. Polar equations of loci 21 19. Construction of polar equations 22 20. General notation 24 SECTION III. -- RELATION' BETWEEN THE RECTILINEAR AND POLAR SYSTEMS. - 64 21. Transformation of coordinates 25 Rectlinear Transformations. 22. Formulæ for passing from any rectilinear system to any other . . 27

Polar Transformations.

23.	Formulæ for passing from any rectilinear to any polar system	30
	Formulæ for passing from any polar to any rectilinear system	81

CHAPTER II. - EQUATION OF THE FIRST DEGREE. THE STRAIGHT LINE.

SECTION IV. - THE RECTILINEAR SYSTEM,

Equations of the Straight Line.

25.	General equation of the first degree	35
26.	Common forms	36
27.	Derivation of the common forms from the general form	38
	Illustrations	39
	Discussion of the common forms	40
	Construction of a straight line from its equation. Examples	43
	Equation of a straight line through a given point	45
	Equation of a straight line through two given points. Examples	45

Plane Angles.

33.	Angle between two straight lines	47
	Equation of a line making a given angle with a given line	48
35.	Conditions of parallelism and perpendicularity. Examples	49

Intersections,

36,	Intersection of loci.	Examples	51
		tersections of loci	

vi

	Distances between Points and Lines, and Angle-Bisectors	in march
ABT		PAGE.
38,	Distance of a point from a line	55
39.	Another method. Examples	56
	Equation of the angle-bisector. Examples	

SECTION V. - THE POLAR SYSTEM.

41.	Derivation of polar from rectangular equations			60
42.	Polar equation of a straight line.	Normal form.	Examples	60

SECTION VI. - APPLICATIONS.

43,	Recapitulation	63
44.	Properties of rectilinear figures	64

CHAPTER III. - EQUATION OF THE SECOND DEGREE. THE CONIC SECTIONS.

SECTION VII. -- COMMON EQUATIONS OF THE CONIC SECTIONS.

The Circle.

46,	Definitions	72
	General equation of the circle	72
48,	The equation of every circle some form of	
	$y^2 + x^2 + Dy + Ex + F = 0$	73
49.	Every equation of the form $y^2 + z^2 + Dy + Ex + F = 0$ the equa- tion of a circle	74
220		
50,	To determine the radius and centre	75
51.	Concentric circles. Examples	75
52,	Polar equation of the circle	77

The Ellipse.

53.	Definitions	78
54.	Central equation	78
55.	Definitions	80
56.	Common form of central equation	80
57.	Length of focal radii	81
58.	Polar equation	81
59.	The ratio	82

vii

ART			PAGE.
60.	Geometrical	construction of the ellipse	. 83
61.	The circle a	particular case	. 85
62,	Varieties of	the ellipse. Examples	. 85

The Hyperbola.

63.	Definitions	87
64,	Central equation	87
65,	Definitions	89
66.	Common form of central equation	89
67.	Length of focal radii	90
68.	Polar equation	91
69.	The ratio	92
70.	Geometrical construction of the hyperbola	93
71,	The equilateral and conjugate hyperbolas	95
72,	Varieties of the hyperbola. Examples	95

The Parabola,

73.	Definitions		98
74.	Common equation		98
	Polar equatiou		99
76.	Geometrical construction of the parabola.	Examples	100

SECTION VIII. - GENERAL EQUATION OF THE CONIC SECTIONS.

77.	Definitions	102
78.	General equation of the conics. Examples	102
79.	Every equation of the second degree the equation of a conic	103
80.	Determination of species. Examples	105
81.	The equation $Ay^2 + Cx^2 + Dy + Ex + F = 0$ represents all species.	106
82.	Definitions	108
83.	Centres	108
84.	The equation $Ag^2 + Cx^2 + F = 0$ represents all ellipses and hyper-	
	bolas	108
85.	Varieties of the parabola	109
86.	Definitions	111
87.	Locus of middle points of parallel chords	111
88.	Tangents at vertices of a diameter parallel to the chords	
	bisected by that diameter	114
89.	Definitions	114
90.	Conjugate diameters of ellipse	114
91.	Every straight line through the centre of an hyperbola meets the	
	hyperbola or its conjugate	115

viii