AN INTRODUCTION TO CHEMICAL PHILOSOPHY ACCORDING TO THE MODERN THEORIES

Published @ 2017 Trieste Publishing Pty Ltd

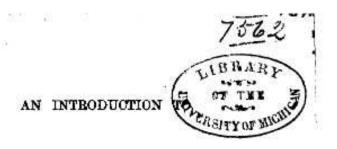
ISBN 9780649056026

An Introduction to Chemical Philosophy According to the Modern Theories by $\,$ Dr. Adolphe C. Wurtz & William Crookes

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017


This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

DR. ADOLPHE C. WURTZ & WILLIAM CROOKES

AN INTRODUCTION TO CHEMICAL PHILOSOPHY ACCORDING TO THE MODERN THEORIES

CHEMICAL PHILOSOPHY

ACCORDING TO THE

MODERN THEORIES.

BY

1

DR. ADOLPHE C. WURTZ, F.R.S.

Translated from the French, by permission of the Author, by William Crooker, F.R.S.

LONDON:

J. H. DUTTON, "CHEMICAL NEWS" OFFICE, 1, WINE OFFICE COURT, FLEET STREET.

1867.

LONDON:

BENJAMIN PARDON, PRINTER,

PATERNOSTER BOW.

INTRODUCTION.

26

1

At a time when the philosophy of chemistry is becoming more and more clearly apprehended, we need to be reminded of its historical development. The more acute and profound our co-ordination and interpretation of phenomena, the more careful should be our scrutiny of the successive views regarding them, which have been previously held. Such a scrutiny will serve two useful purposes, for it will correct two common and erroneous modes of thought. Thus, the technical terms finally adopted in the expression of chemical facts will cease to be vague—they will acquire a constant as well as a definite meaning; and at the same time, that narrowness of vision, which sees everything in one aspect only, will be duly enlarged.

For these reasons the appearance in an English dress, and in a separate volume of Professor Wurtz's "Introduction to Chemical Philosophy," must be regarded as peculiarly seasonable. Many other chemical books have, indeed, been published within the last year or two—in some cases, original

1

works of great merit and usefulness-but the progress of the science has not been recorded lately in a systematic form. Dr. Hofmann's "Modern Chemistry," for example, enounces in the fullest terms the laws of combination by volume, the functions of radicals, and the dependence of chemical types upon the different equivalencies of the elements. Dr. Frankland's "Lecture Notes," on the other hand, develope very amply the equations of chemical changes, and, more especially, the constitution of compounds as made up of atoms bonded together in diverse but systematic modes. But Dr. Wurtz's compact volume fulfils most of the intentions of the works just named, and yet does something more. It traces in sufficient detail the varying opinions of chemical philosophers as to the laws of chemical combination, and the nature of chemical structures. Thus the reader is led gradually to the study of the newest system, while on his way the errors and the glimpses of truth in the older systems are clearly pointed out.

For breadth of view, lucidity of expression, orderly arrangement of facts, shrewdness and fairness in reasoning, Dr. Wurtz's treatise appears to be singularly distinguished. The dates and references will be found of the utmost value, while the justice which marks his attribution of discoveries to their true originators is not the least agreeable feature of the work.

CONTENTS.

PART I.

EQUIVALENTS, ATOMIC WEIGHTS AND MOLECULAR WEIGHTS.

Section 1.	
	PAGE
HISTORICAL DEVELOPMENT OF THE IDEAS, E	QUI-
VALENT, ATOM, MOLECULE	. 1
DEFINITE PROPORTIONS-BQUIVALENTS	. 2
MULTIPLE PROPORTIONS-ATOMS	. 9
LAW OF GAY-LUSSAC-DIFFERENCE BETWEEN AT	OMS
AND EQUIVALENTS	. 11
BERZELIUS'S ATOMIC WEIGHTS AND NOTATION .	. 15
LAW OF SPECIFIC HEATS	. 20
ISOMORPHISM	. 21
EQUIVALENT NOTATION	. 23
GERHARDT'S ATOMIC WEIGHTS AND NOTATION .	
Section II.	
NEW SYSTEM OF ATOMIC WEIGHTS	. 34
THE NEW ATOMIC WEIGHTS IDENTICAL, WITH TH	
EXCEPTIONS, WITH THOSE DEDUCED FROM DUL	ONG
AND PETIT'S LAW	. 37
NEW SYSTEM OF ATOMIC WEIGHTS IN HARM	ONY
WITH THE LAW OF ISOMORPHISM	. 46
NEW SYSTEM OF ATOMIC WAIGHTS IN HARM	ONY
WITH THE RELATIONS EXISTING BETWEEN	
DENSITIES OF GASES AND VAPOURS, AND TH	
MAN DON'T A D. WINDOWSE	47

CONTENTS.

30

						1995	PAGE
EXCEPTIONS TO AMPÈRE	S LA	w.			9.7		48
MOLECULAR WEIGHT .							50
DUALITY OF ELEMENTAR	Y MC	LECO	LES	360	396	>>	54
PHOSPHORUS, ARSENIC,	MEI	RCUB'	r, Al	KD (ADMI	UM	
ARE EXCEPTIONS TO A	MPÈB	e's I	WA				60
VERIFICATION OF ATOMI	C WE	IGHT	9 .			19	62
DISCUSSION OF AMPRICA	LAV	r.	•	301		126	64
DISSOCIATION OF VAPOUR	RB				(4		65
NEW NOTATION AND POI	MUL	Æ		2	88		71
USE OF BARRED LETTERS	в.	•8	*3	$\widetilde{(\bullet)}$	ĕŧ		72
P	AR	r II	r.				
THEORY OF TY	PES	AN	D A	TOM	ICIT	Y.	
	Section	on I.					
THEORY OF TYPES .	400	43	40	32	854		73
CONDENSED TYPES .	40	90	394		.1.		82
MIXED TYPES		•		٠		•	85
94	Sectio	n II					
APPLICATION OF THE TH	EORY	or	TYPE		17.		91
DEVELOPMENT OF THE T	HEOR	Y					94
OBJECTIONS TO THE THE	ORY				114	100	97
ILLUSTRATIONS OF THE ?	THEO:	RY					100
CONNECTION BETWEEN T	HE T	YPES		30			102
s	lection	177					
ATOMICITY OF RADICALS		-		8	95	33.3	104
SUBSTITUTION VALUE	40		365	34	100	(6)	105
SATURATION	611			0.0		1000	106
MONATOMIC RADICALS				3.			107
DIATOMIC BADICALS		39			6.		108
TRIATOMIC RADICALS	¥0.	*	88	(8)	100		109
POLYATOMIC RADICALS							110
CAUSE OF ATOMICITY							111
STATE OF SATURATION O	F RA	DICA	LS.	100			113
RADICALS OF DOUBLE AT	OMIC	TY	325	2.5	515		114

	ONTE	NTS.					vii
, Š	lection	IV.					
							AGE
ATOMICITY OF THE RLEM	ENTS	•	•		**		116
TETRATOMIC CARBON.	3.5	: ·		65	52		117
DIATOMIC CARBON .			•		•		119
POLYATOMIC ELEMENTS		0000000	• 0	• 13	.3		121
CARBON IN ORGANIC COL				1.3	*:	30	122
SPECIFIC OR ATOMIC VO	LUME				2.50	20	124
CONSTITUTION OF DIRTH	YLBNI	CALC	OHO		•		126
FORMULÆ OF CONSTITUT	ION		•			*	129
ATOMICITY OF INORGANI	C ELE	MENT	18	115	20	2.5	130
,, ,, TIN .			4	2			131
,, ,, ARSENIC					\$3		132
" " NITROGEN			(*)	*01	30	*8	133
,, ,, PROSPHOI	RUS.	+		2			133
				83			133
" " LEAD .			•	•3	60		133
POLYATOMICITY OF THE				200	200	150	134
TRUE MEANING OF ATOM	CICITY						135
MEASURE OF ATOMICITY							136
CHLORINE IN PERCHLOR	IC AC	ID	3907	*66	×1	*	137
ATOMICITY OF METALS						:	139
TRUE MOLECULAR FORM	CLÆ	8.			*	•	144
P	ART	Ш					
CONNECTION BI				33355	2027008	AND	Š
	Section	m I.					
ATOMICITY AS A MEANS	OF C	LASSI	PICAT	TON	30		145
GROUPS OF METALS .	•	0)	ŧ	٠	20	3.5	148
?a 3	Section	n II.					
OXIDES, HYDRATES, A	ND 8	ALTS,	INC	RGA	NIC .	AND	
ORGANIC		(9 .9 :1)	53	•			149
ETHERS COMPARED TO S	BLIS					12	152
DIATOMICITY OF BARIUS	M AND	STR	ONTI	UM	100	112	154

į