PRINCIPLES OF MECHANICS, AND THEIR APPLICATION TO PRIME MOVERS, NAVAL ARCHITECTURE, IRON BRIDGES, WATER SUPPLY, &C. THERMODYNAMICS, WITH SPECIAL REFERENCE TO THE STEAM ENGINE

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649516025

Principles of Mechanics, and Their Application to Prime Movers, Naval Architecture, Iron Bridges, Water Supply, &c. Thermodynamics, with Special Reference to the Steam Engine by W. J. Millar

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. J. MILLAR

PRINCIPLES OF MECHANICS, AND THEIR APPLICATION TO PRIME MOVERS, NAVAL ARCHITECTURE, IRON BRIDGES, WATER SUPPLY, &C. THERMODYNAMICS, WITH SPECIAL REFERENCE TO THE STEAM ENGINE

Trieste

PRINCIPLES OF MECHANICS,

AND THEIR APPLICATION TO 35-032-PRIME MOVERS, NAVAL ARCHITECTURE, IRON BRIDGES, WATER SUPPLY, &c.

THERMODYNAMICS, WITH SPECIAL REFERENCE TO THE STEAM ENGINE.

BEING AN ABSTRACT OF LECTURES

DELIVERED TO

THE CLASS OF CIVIL ENGINEERING AND MECHANICS IN THE UNIVERSITY OF GLASGOW, SESSION 1872-73.

аď.

BY

W. J. MILLAR, C.E.,

SECRETARY TO THE INSTITUTION OF ENGINEERS AND SHIPPETILDERS IN SCOTLAND.

LONDON: E. & F. N. SPON, 48, CHARING CROSS. NEW YORK: 446, BROOME STREET. 1874. æ

xer.

- 62

PREFACE.

As indicated on the title-page, the subjects treated of in this book constituted in a more extended form a series of Lectures delivered to the Class of Civil Engineering and Mechanics in the University of Glasgow during the latter part of session 1872-73.

Shortly after the death of Professor Rankine, the author was appointed to conduct the class referred to during the Professorial vacancy; and the various subjects treated of formed part of the complete course as entered in the syllabus of the class.

It having occurred to the author that a carefullyrevised abstract of these Lectures might be of use to students and others studying the various subjects treated of, the work as contained in the following pages is the result.

The subjects have been treated of as concisely as possible, numerical illustrations being occasionally given to assist the reader.

Various authorities have been consulted in the preparation of the present work; amongst others,

> Professor Rankine's Works; Moseley's Engineering and Architecture; Fairbairn's Mills and Millwork;

> > a 2

PREFACE.

Deschanel's Natural Philosophy, by Prof. Everett';
Shipbuilding in Iron and Steel (Reed);
Transactions Inst. Civil Engineers;
Transactions Inst. Engineers and Shipbuilders in Scotland;
Transactions Inst. Naval Architects;
Report (British Assoc.) Sea-going Qualities of Ships, 1869;
Annual of the Royal School of Naval Architecture and Marine Engineering;

and the various Engineering and Scientific periodicals, &c.

W. J. M.

GLASOOW, October, 1874.

ĸ.

iv

CONTENTS.

												PAGE
ENERGY	••		**	-	••		•••			••	**	1
PRIME MOVERS	••	-	10	••	25		••			20	<u>.</u>	8
DYNAMOMETERS	2.2				2.5	395		0.			22	3
MUSCULAR POWER												4
WATER POWER												5
STORAGE OF WAT	TER	++										5
WATEB WHEELS											2	7
Vertical Water	Whe	els						2				7
Relation of the	Ter	me In	mpu	lee, M	Iome	entur	n, ar	A be	stual	Ene	rgy	7
Undershot Wh												8
Undershot Wh	eels,	in wl	hich	the '	Wate	ar act	te by	Wei	ght			11
Overshot Whee	als, in	i whi	ich t	he W	ater	acts	prin	ncipal	lly by	W W	eight	11
High Breast W	heel	s										11
Efficiency of W	ater	Whe	els	(inc)							**	12
Speed of Water	wh	eels							**			13
Horizontal Wa	ter W	Theel	18, 01	Tur	bine	8						14
Reaction Whee	al	- 100		2.4			$\sim 10^{-10}$		300	990		15
WATER-PRESSURE	Eso	INES										16
HYDRAULIC RAM												16
WINDHILLS											10	17
NAVAL ARCHITECT	THE .				••	147					53C	18
				1.		1.1-1	Dom	Del			**	18
EQUILIBRIUM AND	D ST.	ABILI	TY (or Fr	LOAT	ING	DOD	196				
Application to	10000	<u> </u>	TY (or Fr 	LOAT	ING						22
	Ship	8	20200			220200		100.016				22 24
Application to	Ship	8	 	::		••				••	•	
Application to Stability or Sti	Ship ffpes ity	8 8	••	 	 				••	::	:.	24
Application to Stability or Sti Statical Stabili	Ship ffnes ity bility	e s 	••	 		 	 		 	::	::	24 24
Application to Stability or Sti Statical Stabili Dynamical Sta	Ship fines ity bility ling	e s r the 1	 leta	 		 	 		::::	 		24 24 24

9 10 i

1

 ${\mathcal X}^{(2)}$

CONTENTS.

											PAGE 28
	WAVES	- 31.1	••		1000	٠.		**	**	**	30
		**	••	••		••	••	••	••		81
	Action of Waves on a Shi					••	••		••		32
	Instruments for Messurin	-				**	**	(14)	**		33
					195	••			••	19	33
1.4	Resistance to the Motion	01 8		896I					**		10.0
						••	••			**	36
	Reaction of Propellers	••	••	12	••	••	55	••	**	1	87
	Paddle-wheel Propellers		••	••	••	••	••		••		40
	Screw Propellers	**	••	**		++		**	**		42
	Hydraulic Propellers	153	52		1555	••	22	11		12	43
			••		**		10		**		43
	CONSTRUCTION OF VESSELS	÷.		10		99 C		++			44
22	STRENGTH OF STRUCTURES	**			3963	32	(0)	**	33	•••	51
	STRAINS IN GIRDERS				1000		-				51
	D										61
						÷.					63
	M. G. J. & G. Mann					**					65
	FORMS OF GIRDERS	242	8						10		66
	Dist. Ob.		<u></u>			0	1				66
	Tattice Oladam	**									67
	Demotries Obdan	••			89	÷.					68
	m 1 1 m 1			1.00	1942						69
	And Dike					20			<u></u>		70
			<u>.</u>			<u> </u>			- 57		71
	C		÷.								73
	Commenter Presso								20	10	75
		••	2	100	••	<u>.</u>	•••		1	••	37.3
		••		**	**	••	••	••	••	••	76
	DEFLECTION OF BEAMS	••	••		••						76
	STABILITY OF STRUCTURES		÷.,			÷.	••		<u>.</u>		78
	Retaining Walls to resist	Flui	d I	reast	1P8		\mathbf{e}		23	**	78
	Retaining Walls to resist	Eart	th I	reast	are						82
	Towers and Chimneys					÷.					82
	STRENGTH OF SOLID CYLIN	DERS				1 0	128		22		85
	Shafts and Axles										85
	STRENGTH OF HOLLOW CYL	INDE			ENIST			AL F	RESS	URB	87
	Thin Shells, such as Boild						**				87
	Thick Hollow Cylinders,										87
	STRENGTH OF SPRINGS										88
	STRAGTL OF DELEGS	1	••		**	10	••		**	1.10	00
Q.U	24										

 \mathbf{z}_{i}

vi

- 25

CONTENTS.

THERMODYNAMICS	23	-			22	5.23		22	243			PAGE 90
SOURCES OF HEAT												91
TRANSMISSION OF	HEA	T	922	32		353		22	222			92
EXPANSION		11	-	33 (26	5743		÷2			62	94
HEAT INDICATORS		24	**	-		2063		83	144	**	22	97
LIQUEFACTION	300	22		3003		1.400	0.00					99
SPECIFIC HEAT								**	0.00			100
COMBUSTION			••					**				102
STEAM BOILERS						**			**			106
Relations betwee	en l	Heat	and	Mec	hani	cal I	Energ	ZY.				108
STRAM ENGINES						144		÷.	1.0	443	22	110
Indicated and h	Tom	inal l	Hors	e-po	wer	Sac.		$\mathbf{x}\mathbf{x}$			76	112
Indicator		**										117
COMPOUND ENGIN	28											118
Condensers	\mathbf{n}	14	000	100	**	302		••			22	120
HOT-AIR ENGINES								22		345	22	122
GAS ENGINES	**		-	0.000		-		33	-	**		122
ELECTRO-MAGNETIC	ENG	INES										123
WATER SUPPLY							6.00C					124
FILTERS			00200				500X					125
CLEAB-WATER TA	NR	2										126
. PIPING								÷.			- 22	126
FLOW OF WATER	THI	OUGE	PI	PES	33				- 22	348		128
SPECTEUM ANALYSI	s	-	52	222		12		32	- 22	(23)	-	130
INDEX				-	-			12		-		133
construction and the clinet	1.100			- 37 - 17								

vii